50 research outputs found

    Blocking entry of hepatitis B and D viruses to hepatocytes as a novel immunotherapy for treating chronic infections

    Get PDF
    Background. Chronic hepatitis B and D virus (HBV/HDV) infections can cause cancer. Current HBV therapy using nucleoside analogues (NAs) is life-long and reduces but does not eliminate the risk of cancer. A hallmark of chronic hepatitis B is a dysfunctional HBV-specific T-cell response. We therefore designed an immunotherapy driven by naive healthy T cells specific for the HDV antigen (HDAg) to bypass the need for HBV-specific T cells in order to prime PreS1-specific T cells and PreS1 antibodies blocking HBV entry. Methods. Ten combinations of PreS1 and/or HDAg sequences were evaluated for induction of PreS1 antibodies and HBV- and HDV-specific T cells in vitro and in vivo. Neutralization of HBV by PreS1-specific murine and rabbit antibodies was evaluated in cell culture, and rabbit anti-PreS1 were tested for neutralization of HBV in mice repopulated with human hepatocytes. Results. The best vaccine candidate induced T cells to PreS1 and HDAg, and PreS1 antibodies blocking HBV entry in vitro. Importantly, adoptive transfer of PreS1 antibodies prevented, or modulated, HBV infection after a subsequent challenge in humanized mice. Conclusions. We here describe a novel immunotherapy for chronic HBV/HDV that targets viral entry to complement NAs and coming therapies inhibiting viral maturation

    Generation of Covalently Closed Circular DNA of Hepatitis B Viruses via Intracellular Recycling Is Regulated in a Virus Specific Manner

    Get PDF
    Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process

    Changing profile of HIV-1 serotypes in Iceland during 1989-96

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldA total of 63 HIV-1 strains collected in Iceland during the years 1989-96 were typed into serotypes A-E using a peptide-based enzyme immunoassay. The majority of the strains were of serotype B (66.6%). 22.2% were untypeable by this method. Until 1993 only serotype B was found, but in 1993 and after that date other serotypes, especially E (7.9%) were detected, indicating the spread of serotypes previously confined to developing countries. This may reflect the increase in the number of Icelanders travelling to distant countries and the increased immigration into Iceland from developing countries
    corecore